Grid Data Mirroring Package

Grid Data Mirroring Package*(GDMP)
User Guide for GDMP 2.0

Heinz Stockinger 1), Asad Samar 2), Shahzad Muzaffar 3),
Flavia Donno 4), Andrea Domenici 5)

1) CERN, European Organization for Nuclear Research, Geneva, Switzerland, Heinz.Stockinger@cern.ch
2) California Institute of Technology, Pasadena, California, Asad.Samar@cern.ch
3) Fermi National Laboratory, Batavia, Illinois, muzaffar@fnal.gov
4) INFN Pisa, Italy, Flavia.Donno@pi.infn.it
5) INFN & University of Pisa, Italy, andrea@sssup.it

October 24, 2001

Abstract

The GDMP client-server software system is a generic file replication tool that replicates files
securely and efficiently from one site to another in a Data Grid environment using several
Globus Grid tools. In addition, it manages replica catalogue entries for file replicas and thus
maintains a consistent view of names and locations of replicated files. Files of arbitrary file
format can be replicated. For Objectivity database files a particular plug-in exists. All files
are assumed to be read-only.

GDMP is a collaboration between the European DataGrid [2] project (in particular the
Data Management work package, Work Package 2 (WP2) [3]) and Particle Physics Data Grid
(PPDG) [9]. GDMP version 2.0 is part of the official DataGrid software system.

This user guide gives detailed instructions for installation and usage of GDMP. In addition,
a generic replica catalogue API in C++4 for the Globus Replica Catalogue is provided and
described.

“previously called Grid Data Management Pilot

Contents

1 Introduction

2 New Features and Improvements in Version 2.0

3 Software Installation

3.1 Required Software
3.2 Installation Instructions

3.3 RPM Installation

3.4 Configuration Instructions L o oL

3.5 The GDMP Directories

3.6 GDMP Server Certificate
CERN Certificate
3.7 Globus Certificate

3.6.1

4 Data Replication and Background for GDMP Usage
4.1 Directories and File Replication o o 00000

4.2 Filenames

4.3 Globus Replica Catalogue oL

4.4 Internal File Catalogues

5 Using GDMP

5.1 Quick Start Guide torun GDMP
5.2 The Mechanics of GDMP
5.3 Security Issues for GDMP Server and Clients
5.4 Subscription to Remote Serverso

5.5 Notification

5.6 System States for File Replication Process

5.7 Replication Policy
5.8 Network Failures

=

6 GDMP Tools

5.9 Some Program Restrictions

7 Support for a Mass Storage System

7.1 Motivation
7.2 Flow of Control
7.3 The Interface
7.4 Staging States
7.5 Interface to HRM

8 Appendix A: Configuring GDMP with inetd

8.1 Inetd Background

8.2 Configuration Steps done by GDMP Installation Program
8.3 Example Configuration for inetd L.

9 Appendix B: Example for gdmp.conf

10 Appendix C: Usage of Grid Security Infrastructure

BN (G BTSN

10
10
10
10

10
11
11
12
13

13
13
15
17
17
17
18
19
19
19

19

25
25
26
26
27
27

28
28
28
29

30

35

11 Appendix D: Replica Catalogue API
11.1 Description of the Programming Interface

11.2 Usage Instructions

12 Appendix E: BrokerInfo API
12.1 Description of the Programming Interface

12.2 Usage Instructions

1 Introduction

The GDMP [10, 6, 11] software tools provide automatic, asynchronous replication (mirroring)
of arbitrary files of any data format (called “flat files” in this document) and Objectivity
database files in a Data Grid environment. In principle, a site, where files are created, has to
notify the GDMP software which in turn notifies all the other sites in the Grid about the new
files. A file is ready for mirroring only when it is guaranteed that it is closed and no other
process will write into it anymore. It is the responsibility of the source site to determine when a
file is ready for transfer. The destination sites receive a file listing of all the new files available at
the source site and can determine themselves when to start the actual data transfer. The data
transfer is done with GridFTP clients and GridFTP servers (i.e. GSI enabled and modified
wu-ftp server). Replicas can be registered in a replica catalogue (based on the Globus replica
catalogue using an LDAP [13] implementation) and thus made available to the Grid. A user
has to be authenticated and authorised before contacting any remote site. Authentication and
authorisation are based on the Grid Security Infrastructure (GSI security) layer available from
Globus.

WP2 (the Data Management work package in the European DataGrid) is working on a
generic replica catalogue API. The GDMP code distribution contains a preliminary C++ API
(see Appendix C in Section 11) for a central Globus replica catalogue based on LDAP. Note that
GDMP internally also uses the Globus replica catalogue for management of replica information.

To sum up, the software package contains three major parts:

e GDMP for file replication. The main purpose of this User Guide is to explain its func-
tionality.

e a generic Replica Catalogue API in C++

e BrokerInfo: this is an API to handle information coming from Scheduling system of WP1
(Workload Management, DataGrid) which is provided to Data Grid application running
on the first DataGrid testbed but is not required for GDMP itself.

2 New Features and Improvements in Version 2.0
The following is a list of new features in GDMP version 2.0 and changes from version 2.0alpha:

1. GDMP depends on Globus Toolkit 2.0 Alpha Release 9 or higher.
2. The GridFTP client library is used instead of NC-FTP.

3. A new tool gdmp_cert_update allows to switch from a CERN to a Globus certificate for
the GDMP server

4. in gdmp.conf, three new variables have been added: GLOBUS_LOCATION, OBJEC-
TIVITY_DIR, ORBACUS_DIR

New Features in GDMP 2.0alpha (30 Sep. 2001)

The following is a list of new features in GDMP version 2.0alpha and changes from version
1.2.2:

1. The Globus replica catalogue is used for storing file replica information about logical
and physical filenames as well as file attributes (size, timestamp, CRC checksum) and
physical file locations.

2. An additional notification system for file transfers is added.

3. Most of the command line tools have new short, single letter option names instead of
entire words, e.g. gdmp_ping -r instead of gdmp_ping -remotehost.

4. The tool previously called gdmp_cleanup has been renamed to gdmp_catalogue_cleanup.

5. A new tool gdmp_register_local file has been added that needs to be called before
gdmp_publish_catalogue.

6. A local file catalogue keeps track of all files GDMP manages locally.
7. The tool previously called gdmp_replicate_file_get has been renamed to gdmp_replicate_get.

8. The tool gdmp_setup is no longer available as a self-contained installation and configu-
ration procedure is now used.

9. Instead of environment variables, a GDMP configuration file (gdmp.conf) is used.

10. The staging scripts called through GDMP_STAGE_T0_MSS and GDMP_STAGE FROM_MSS (Sec-
tion 7) now require two arguments instead of one.

11. A generic replica catalogue API in C++ for the Globus Replica Catalogue is provided.

12. An appendix on the practical usage of the Grid Security Infrastructure has been added.

3 Software Installation

In the following section we give detailed instructions for the installation of the software pack-
age. We provide a source code distribution as well as a binary distribution and explain both
installation procedures.

3.1 Required Software

The GDMP software runs and has been tested on Linux RedHat 6.1 and 6.2 on top of
Globus Toolkit 2.0 Alpha Release 9. The GDMP software consists of several executables and
a server named gdmp_server which runs using the Internet daemon (inetd) (see Section 8 for
more details) at the host that produces files. The host has to be reachable by the “outside
world” and cannot be behind the local firewall since permanent network connections to this
machine are required. The same is true for the FTP server.

A site has to have the following software installed locally:

o GDMP software version 2.0

e Globus Toolkit 2.0 Alpha 9 (special release for European DataGrid) or higher (including
the WU-FTP server),
http://datagrid.in2p3.fr/distribution/globus/alpha-9/

e g++ compiler gce-2.91.66 or gee-2.95.2

GNU Make version 3.77 or higher

GNU Autoconf version 2.13

e GNU libtool 1.4

GNU automake 1.4-p2

GNUm4 1.4

RPMv3 or higher

GDMP uses file locks and they have to be enabled on the system where GDMP is installed.

In case Objectivity files are replicated, Objectivity/DB Version 5.x or 6.x is required.
Furthermore, the Objectivity bootfile as well as all the Objectivity database files have to be
reachable by the FTP and the GDMP server. This guarantees a continuous data transfer from
the local to the remote disk via FTP. File access via the Objectivity AMS is not supported
through GDMP.

If the BrokerInfo library is built/used, also the Condor ClassAd v2.6 software must be
installed and available to users.

Note that for a binary distribution the GNU Autoconf and lib tools are not required.

3.2 Installation Instructions

The following instructions apply to the source code distribution. Before starting the compila-
tion, the following environment variables can be set or configured with configure (see below):

GLOBUS_LOCATION: base directory of the Globus installation

0BJY_DIR: base directory for Objectivity installation - only required if you plan to build GDMP
with Objectivity support.

CLASSAD DIR: If you plan to build the BrokerInfo library (not required for GDMP nor the
Replica Catalogue, the environment variable CLASSAD_DIR has to point to the Condor
ClassAd installation directory.

After unpacking the GDMP source distribution tar file, or getting the code directly from
the CVS repository, change your working directory to be the GDMP base directory and run
the following command:

./bootstrap

At this point you are ready to run the configure command. The configure command
should be invoked as follows:

./configure [option] where option can be the following:

—--help

—--prefix=<installation dir> it is used to specify the GDMP installation dir. The
default installation dir is /opt/edg.

--enable-brokerinfo it is used to enable the build of the BrokerInfo User API Ili-
brary. Note that the BrokerInfo API is provided by the Workload management
work package and is not required for GDMP. By default this option is turned off.
If the environment variable CLASSAD DIR is not set, you can specify the ClassAd
installation directory using the option ——with-classad-install=<dir>.

--enable-gdmp it is used to build the GDMP package and the Replica Catalogue
User API library. By default this option is turned on. You can use the option
--disable-gdmp to only build the Replica Catalogue User API library.

—--with-objectivity it is used to enable Objectivity support. By default this option is
turned on. If the environment variable 0BJY_DIR is not set, you can specify the Clas-
sAd installation directory using the option —-with-objectivity-install=<dir>.

--with-globus-install=<dir> allows to specify the Globus install directory without

setting the environment variable

--with-globus-flavor=<dir> allows to specify a specific Globus flavour. Possible
values are gcc32dbgpthr, the default, and gee32dbg.

During the configure step, a spec file (gdmp[-objy].spec) will be produced in the GDMP
source directory to produce a flavour specific version with or without Objectivity.

gmake

Run gmake in the GDMP source code directory. Be careful to use the GNU distribution of
make. Proprietary versions do not work all the time. (GDMP, RC, BrokerInfo have only been
built successfully on RedHat6.1 and RedHat6.2).

gmake install

In order to install the package in the installation directory specified by the —prefix option
during the ”configure” step, you can now issue the command gmake install in the GDMP
source tree.

gmake -i dist

The command gmake -i dist will produce in the GDMP source directory a binary gzipped
tar ball of the GDMP distribution. This tar ball can be unwinded on a different machine. This
step in not required for each installation. This tar ball can be used as source for the RPM
creation.

rpm -ba gdmp[-objy].spec

In order to create an RPM for GDMP 2.0, take the tar ball created during the previous step
and copy it into the rpm SOURCES directory, usually located in /usr/src/redhat/SOURCES.
Copy the generated spec file (gdmp[-objy].spec) into the rpm SPECS directory, usually located
in /usr/src/redhat/SPECS. Make sure the PATH for root is set in such a way that the GNU
autotools, gmake and the compiler can be used. Execute the command above.

gdmp/utils/configure_gdmp <gdmp-install-dir> <userid> <port>

The command gdmp/utils/configure_gdmp is executed as root and will properly configure
the gdmp_server in the system files. The script requires three input parameters: GDMP_INSTALL_DIR
userid and port. For further details refer to the Section 3.4. The configure_gdmp script does
not set any user path. It is responsability of the system administrator of the machine to add, if
necessary, the directories GDMP_INSTALL_DIR /utils and GDMP_INSTALL_DIR /bin to the
default user path.

3.3 RPM Installation

In order to install the GDMP RPM with a given flavour (Objectivity or not) execute the
following command as root:

rpm -ivh [--prefix <installdir>] gdmp[-objy]l-2.0-1.i386.rpm

By default the rpm installs the software in the /opt/edg/gdmp directory. Using the —prefix
directive, you can relocate the software and install it under a different directory.

If you want to install the rpm as a non-root user, you should have a private copy of the
RPM databases in a private directory (you can copy all *.rpm files from /var/lib/rpm in a
directory where you have write access) or you should have write access to the default RPM
database directory /var/lib/rpm and the rpm files in that directory. Then you can use the
command:

rpm -ivh [--prefix <installdir>] [--dbpath <RPM database dir>] \
gdmp [-objy]l-2.0-1.1386.rpm

where jinstalldir; is the directory where you want to install the software and jRPM database
dir;, is your own private RPM database directory (you do not need to specify such a parameter
if you have write access to the default /var/lib/rpm dir and its content).

After installing the binary RPM, the user needs to make sure that GDMP_INSTALL_DIR/1ib'
is included in LD_LIBRARY_PATH.

Furthermore, the script configure _gdmp can be used as root to execute the configuration
root, steps.

In addition to binary RPMs, also source RPMs (gdmp [-objy]-2.0-1.src.rpmare available
on the GDMP web page under “Software” at: http://cmsdoc.cern.ch/cms/grid

For further information on RPM please consult the man pages or http://www.rpm.org.

3.4 Configuration Instructions

Once GDMP is installed properly, the GDMP server and the client applications need to be
configured. For the GDMP server, the following parameters have to be set which will be stored
in a GDMP configuration file, gdmp.conf. All values are separated with a “=" and a sam-
ple configuration is given below. No extra characters are allowed after the values specified.
Some variables are optional (O) and others are compulsory (C). Appendix B lists the con-
tents of the entire file and gives additional comments. In the example below we assume that
GDMP is installed on hostl.cern.ch and a replica catalogue service on a second machine called

host2.cern.ch.

!GDMP_INSTALL_DIR is set in gdmp.conf

GDMP_INSTALL DIR=/usr/local/grid/gdmp: (C) - this variable has to be identical with
the path name indicated with ./configure --prefix for the source code distribution
(i.e. it points to the GDMP install directory). GDMP client applications require this
path.

GDMP_LOCAL _HOST=host1.cern.ch: (C)- local host name where GDMP is installed.
GDMP_LOCAL DOMAIN=cern.ch: (O) - domain name of GDMP host.
GDMP_PORT_NUMBER=2000: (C) - Port number on which the GDMP server is listening.
GLOBUS_LOCATION=/opt/globus: (C) - Globus installation directory

OBJECTIVITY DIR=/usr/local/bin: (O) - Objectivity installation directory - only re-
quired if Objectivity database files are replicated

ORBACUS_DIR=/usr/local/bin: - (O) - Orbacus installation directory - only required if
MSS interface to HRM is used, see Section 7.

GDMP_FLATFILE ROOT_DIR=/pool/data/flatfiles: (C) - A common directory path for
all physical files has to be provided. All physical filenames then have to contain this path
in their path names.

GDMP_STAGE_FROM_MSS=/usr/local/grid/gdmp/utils/stage frommss: (O) - used for
staging a file from a mass storage system to a disk pool. Refer to Section 7 for details.

GDMP_STAGE_TO_MSS=/usr/local/grid/gdmp/utils/stage tomss: (O) - used for stag-
ing a file from a disk pool to a mass storage system. Refer to Section 7 for details.

GDMP_FILE CATALOG_SCRIPT: (O) create a listing of files in a directory. Refer to Appendix
B for details.

GDMP_REP_CAT_MANAGER DN=cn=RCManager, dc=host2, dc=cern, dc=ch: (C/O) these
are compulsory parameters if a the Globus replica catalogue based on LDAP [13] is
used. The parameters are specific to the LDAP setup and need to be checked with the
administrator of the replica catalogue. It is only needed when publishing files to the
LDAP replica catalogue.

GDMP_REP_CAT MANAGER PWD=secret: (C) - this password is required if new information
needs to be inserted into the LDAP replica catalogue. For search operations, the pass
word is not required.

GDMP_REP_CAT FLATFILE COLL URL=1dap://host2.cern.ch:2010/

lc=flatfiles, rc=replica-catalogue, dc=host2, dc=cern, dc=ch: (C) - flat files
and Objectivity files are separated in the replica catalogue. All flat files are in one
collection whereas all Objectivity files are in another collection. A collection needs to be
identified by a name which is then used in the Globus replica catalogue.

GDMP_REP_CAT _OBJECTIVITY COLL URL=1dap://host2.cern.ch:2010/

lc=objyfiles, rc=replica-catalogue, dc=host2, dc=cern, dc=ch: (C) - flat files
and Objectivity files are separated in the replica catalogue. All flat files are in one
collection whereas all Objectivity files are in another collection. A collection needs to be
identified by a name which is then used in the Globus replica catalogue.

e GDMP_REP_CAT_URL=1dap://host2.cern.ch:2010/
rc=replica-catalogue, dc=host2, dc=cern, dc=ch: (C)- every LDAP server is iden-
tified by a unique name and a port number

e GDMP_NOTIFICATION FOR REPLICATE GET=/usr/local/grid/gdmp/utils/notifcation get:
(O) when a remote site has successfully transferred a file from the local site, the local
server is notified and the stated script is called (see Section 5.5).

e GDMP_NOTIFICATION_FOR_PUBLISH CATALOGUE=
/usr/local/grid/gdmp/utils/notifcation publish: (O) - a notification script is called
when the local site publishes the export catalogue (see Section 5.5).

e GDMP_0BJY_ROOT_DIR=/pool/objy: (C) - A common directory path for all physical Ob-
jectivity files has to be provided. All Objectivity filenames then have to contain this path
in their path names.

e 00_FD_BOOT/pool/objy/example federation.boot: (O) - boot file path for Objectivity
federation.

e GDMP_DEFAULT NEW_FDID=12345: (O) - if a new federation is created by GDMP, it will
assign the following federation ID. By default it is assumed that the federation exists
already.

By default, the file gdmp . conf is supposed to bein /etc, /usr/local/etcor /opt/edg/etc
but can be put to any user defined location. If a user defined location is used, the environment
variable GDMP_CONFIG_FILE has to be set and point to the location of the file. Note that this is
the only environment variable that needs to be set in order to run GDMP client applications.
Next, GDMP can be configured automatically with utils/configure _gdmp:

configure_gdmp <gdmp-install-dir> <userid> <port>

The command configure_gdmp is executed as root and will properly configure the GDMP
server in the system files (/etc/services and /etc/inetd). The script requires three input param-
eters: GDMP_INSTALL_DIR userid and port. The GDMP server will run under the user-1D
userid and on the specified port.

In detail, configure_gdmp updates the inetd configuration file for the GDMP server. Inetd
will accept incoming requests on a certain port and then calls the GDMP server to handle the
request. Note that by default GDMP will be assigned a service called “gdmp-server”. If the
configuration file finds already a GDMP installation on the same machine, the new server will
be assigned the service name “gdmp-server-date” where “date” is the current date when the
script is run. Thus, several GDMP servers can be configured on the same machine. If the file
/etc/services is edited manually, please make sure that the GDMP server name needs to be
“odmp-server-*” where “*” can be any string. 3.4.

The file GDMP_INSTALL DIR/utils/gdmp_server_start handles these interactions and is
configured automatically by the installation program. Note that the script gdmp_server_start
is the main script for starting the GDMP server and needs to be modified for the specific
installation. For further information on inetd, an example configuration and possible problem
shooting refer to Appendix A.

10

3.5 The GDMP Directories

When GDMP is installed correctly, the following directories are available in the GDMP instal-
lation tree:

bin etc doc include 1lib tmp utils var

The directory bin contains all the GDMP client applications as well as the GDMP server.
doc contains the complete documentation of GDMP. var contains the log files created during
program execution. The stdout and stderr of the GDMP server and all clients are also redirected
to files in this directory.

etc contains the certificate and key to be used by the GDMP server to authenticate itself to
the other Grid nodes, and the host_1list file containing information about all the subscribed
remote hosts. Furthermore, it contains the import_catalogue file containing information
about all the files which are to be transferred from the remote hosts and the export_catalogue
file containing information about the new files on the local host that must be notified to the
subscribers. Finally, also the local_file_catalogue is stored here.

tmp contains temporary files maintained by the server or different clients. include contains
the Replica Catalogue user interface (in subdirectory ReplicaCatalog) as well as internal GDMP
header files (in subdirectory gdmp). Finally, libraries for the Replica Catalogue and GDMP
are stored in 1ib.

In the current version it is assumed that at one site where GDMP is installed, the server
and the client applications are always used by the same user since the read /write permissions
to the directories and files are set to a single user only.

3.6 GDMP Server Certificate
3.6.1 CERN Certificate

The GDMP server currently requires a special “service” certificate for authentication and
authorisation. The default certificate is signed by CERN and thus machines running the
GDMP server need to accept CERN signed certificates. For more details on CERN certificates
and how to accept them refer to:

http://globus.home.cern.ch/globus/ca/

3.7 Globus Certificate

The CERN signed certificate is required within the DataGrid project. In order to support also
the needs of the e.g. PPDG project, a Globus signed server certificate is available too and one
needs to switch to the Globus certificate like follows:

gdmp_cert_update -switch

For more details on the script refer to end of Section 6.

4 Data Replication and Background for GDMP Usage

GDMP is a file replication tool for replicating read-only files of any data format. In addition
to transferring files from one site to another and notifying about new files created locally, the
Globus replica catalogue is used to store file information about all sites in a Virtual Organisa-
tion and having GDMP installed. For details on replica catalogues and file replication refer to
the DataGrid WP2 design document [7].

11

Although any file format can be used, GDMP has a particular plug-in for Objectivity files
where files are “attached” to an Objectivity federation?. Most of the command line tools are
by default configured for flat files rather than Objectivity files.

4.1 Directories and File Replication

GDMP manages files stored in a particular storage root directory on a local disk or mounted
disk pool. It requires all physical files to be stored in this directory structure which can
be configured for each GDMP installation and thus for each storage system. Note that we
distinguish between “flat files”? (this can be any arbitrary file format like ROOT, ZEBRA,
etc.) and Objectivity files which require particular replication steps. GDMP also requires two
different storage root directories for these two file formats.

We start with an example. We assume that a large disk pool is mounted on a host
hostl.cern.ch. Files are stored in the directory /data/runi/. In the directory runi sev-
eral subdirectories can exist and a possible directory layout is as follows:

/data/runl/dayl/filel
/data/runl/dayl/file2
/data/runl/dayl/file3
/data/runl/day2/fileA
/data/runl/day2/fileB

GDMP requires a common root path for the directory structure since it manages several
files in the replication process. In our example the common directory and thus the stor-
age root directory for flat files is /data/runl. GDMP uses a configuration variable called
GDMP_FLATFILE ROOT_DIR which needs to be set in the file gdmp. conf (see Section 3).

For Objectivity files a similar directory structure is required and the variable GDMP_OBJY_ROOT_DIR
must point to the storage root directory for Objectivity files.

The main task of GDMP is to mirror the directory structure of one storage system (called
Storage Element in DataGrid terminology) to another. Thus, a storage root directory is re-
quired on both sites that participate in the mirroring process. Note that the storage root
directory does not have to be identical on all Storage Elements but can be chosen and config-
ured based on the local directory structure. If we now assume that all the files above need to be
replicated to a Storage Element at Fermilab, the destination host first needs to set up a storage
root directory. For example, on host1.fnal.gov (at Fermilab), GDMP_FLATFILE ROOT_DIR has
the value /largedisk/cms/production/runl. The GDMP replication process now can repli-
cate files from the storage root directory on the source machine to the one on the destination
machine.

4.2 Filenames

When files are replicated, identical files (replicas) exist at multiple locations and need to be
identified uniquely. A set of identical replicas is assigned a logical filename (LFN) and each
single physical file is assigned a physical filename (PFN). In [7] we also include a transfer
filename (TEN) but we do not discuss it further and we will assume that all PFNs have the

We do not discuss the details of Objectivity but point out that for Objectivity database files additional
replication steps are necessary, as indicated when GDMP command line tools are explained.

3Note that the term flat file should not be regarded as offensive but rather to distinguish these files from files
that need certain pre- and post processing steps as it is the case for database files.

12

complete paths used by the Storage Element’s file system to refer to files resident on disk. The
PFN also contains the host name i.e. the domain name of the Storage Element (see “Section
4.2 File Replication”, in [7]) where the file is located and accessible via a Grid file transfer tool
such as a GSl-enabled FTP server.

A typical example of a physical filename under the above assumptions is as follows:

pfn://hostl.cern.ch/data/runl/dayl/filel

We observe that when PFNs are used with GDMP, the prefix “pfn://” is not required.
Once the file is created and the PFN is available, it can be inserted to the replica catalogue
that provides a global name space for file replicas. See “Section 5.1.1 Replica Catalog” in [7]
for details on replica catalogue issues. Note that for this GDMP version we use a single replica
catalogue located at a single host (rather than a distributed replica catalogue as presented
in [7]). In addition to the PFN, a logical filename must be assigned to the physical file. In
the current version of the Globus replica catalogue, the LFN is equal to the last component
of the PFN, i.e., to the file name including parts of the directory structure. This is a current
restriction that will be removed in future versions. Thus, the logical filename is created auto-
matically by GDMP from the physical filename complying with the implicit mapping enforced
by the replica catalogue and for the physical filename in the example above it looks as follows:

day1l/filel

4.3 Globus Replica Catalogue

In this subsection we describe how the Globus replica catalogue needs to be set up to interact
with GDMP.

GDMP uses the Globus replica catalogue implementation which is based on LDAP. For
details on the Globus replica catalogue refer to the user guide in [5]. The replica catalogue
service is based on the LDAP protocol and a database backend where all replica information
is stored. In principle, any possible LDAP server and a corresponding database backend can
be used. The currently adopted solution is to use the OpenLDAP server and one of the
database backends supported by OpenLDAP. For Solaris and Linux platforms we have tested
the SleepyCat database backend (Sleepycat Berkeley DB 2.7.7: (08/20/99)). For Linux we
tested the OpenLDAP database backend Idbm. Details on LDAP configuration can be found
in [4].

As pointed out in Section 3, the following three LDAP replica catalogue variables have to
be set in gdmp.conf:

GDMP _REP_CAT _MANAGER_DN
GDMP _REP_CAT _MANAGER_PWD
GDMP_REP_CAT_URL

Since we distinguish between flat files and Objectivity files as regards storage root directo-
ries, we need to do the same for replica catalogue configuration. The Globus replica catalogue
provides the concept of collections that group several logically related files. Collections are
not used explicitly in the GDMP user interface, but one collection for flat files and another
collection for Objectivity files are implicitly created by GDMP in the replica catalogue to man-
age the two types of files. Thus, the following two configuration variables have to be set in

13

gdmp . conf to specify the two collections:

e GDMP_REP_CAT_FLATFILE_COLL_URL: collection of all flat files

e GDMP_REP_CAT_OBJECTIVITY_COLL_URL: collection of all Objectivity files

Note that all sites inserting information in the replica catalogue of a single Virtual Or-
ganisation, such as an experiment in a HEP environment, need to use the same collection

URL.

4.4 Internal File Catalogues

GDMP uses a few catalogues that are used for internal book keeping and monitoring of the
replication process. Once a site has finished writing a set of files (or just a single file), every
single file needs to be registered in a local file catalogue which only contains files that are avail-
able at the local site. This catalogue contains the physical filename and logical file attributes
like logical filename, file size, creation time, CRC checksum, file type. The local file catalogue
is hidden from outside users and is thus only visible to the local GDMP server. The client
application gdmp_register_local file is used for inserting files to this catalogue.

At a certain point in time, a site can decide to publish its local files to other Grid sites
using gdmp_publish catalogue. In detail, all file entries of the local file catalogue are written
into the replica catalogue* and also sent to subscribed sites at remote sites (see Section 5.4.
A list of all newly published files and their related information is written to a local export
catalogue. The consumer site that wants to receive files creates an import catalogue where it
lists all the files that are published by the producer and have not yet been transfered to the
consumer site. The import catalogue holds the host name of the FTP server and all related
physical and logical file information for each file. Figure 1 illustrates this model graphically.

When files are published, all required file information is read from the local file catalogue.
Since the catalogue holds file attributes like size, during the execution of the publish command
the files to be published do not need to reside on their physical location on disk but can already
have been staged to a mass storage system. Note that files have to be at the disk location
when gdmp register local file is called since file size and CRC check sum are automatically
created by GDMP and then stored in the local file catalogue.

5 Using GDMP

In this section we provide information on using the GDMP server and client applications and
refer to Section 6 for detailed parameters for the command line tools.

5.1 Quick Start Guide to run GDMP

Follow these five steps to run the GDMP server and transfer files quickly and securely.
Assume that files are to be transferred from site A to B.

1. Register gdmp_server as an inetd service on site A as user ‘x’ and site B as user ‘y’. This
is done automatically by the installation program.

There are no restrictions on ‘x” and ‘y’.

4An insertion to the replica catalogue can also be disabled.

14

[Globus Replica Catalogue]

local file catalogue ! ! local file catalogue
) x |
- (]
-7 < N
producer ‘consumer
(GDMP) 8 (GDMP)
®
o
g
file 1 file 1 (producer_information)
file 2 file 2 (producer_information)
file 3 file 3 (producer_information)

Figure 1: The role of the local file, export, import catalogues

You can specify the grid-mapfile to be used by the server using the ‘-m’ option. The
default is /opt/globus/etc/grid-mapfile. You can make your own grid -mapfile
on the same format as used by Globus and it will work but make sure that it has
correct file access permissions.

Result: The server should start. The stderr and stdout are redirected the files

GDMP_INSTALL DIR/var/gdmp_server.out and gdmp_server.err.
2. Run gdmp host_subscribe on site B as a user ‘y’, giving the host and port of site A.

You should first get a proxy using grid-proxy-init. For more details on Grid security
refer to Appendix C.

This user ‘y’ should be in the grid-mapfile used by the server at site A.

Result: This should add the information about host on site B in the
GDMP_INSTALL DIR/etc/host_1list file at site A.

3. Run gdmp_register_local_file on site A as user ‘x’.

Files stored in the storage root directory (e.g. /data/runl in Section 4.1) are registered.
In case of Objectivity files: the lock-server of the related bootfile should be running.

Result: The files in the corresponding directory are inserted into the local file catalogue.
4. Run gdmp_publish_catalogue on site A as user x’.

You should get the proxy for the client using grid-proxy-init once.

Files can only be published if they are in the local file catalogue.

This user ‘x’ should be in the grid-mapfile used by the server at site B.

This user ‘x’ has to be mapped to a local user which has read /write access in GDMP_INSTALL DIR/tmp
and GDMP_INSTALL DIR/etc directories on site B. This mapping is required in the
grid-mapfile used by the FTP server which by default is in ” /etc/grid-security /grid-
mapfile”.

Result: This should create a file GDMP_INSTALL DIR/etc/import_catalogue on site B
which will have the details of files at site A. Replica information by default is inserted
to the replica catalogue.

5. Run gdmp_replicate_get on site B.

In case of Objectivity files, the lock-server of the OO_FD_BOOT should be running.
The GDMP_STORAGE_ROOT_DIR should have enough space to hold these files.

Result: This should transfer the files from site A to site B and validate them. In
case of Objectivity files, the files are attached to the federation at site B. Replica
information by default is inserted to the replica catalogue.

5.2 The Mechanics of GDMP
Registering a file in the Local File Catalogue

Once files are available on disk for replication to remote sites, the files need to be regis-
tered in a local file catalogue. This catalogue keeps track of all files that GDMP manages.
GDMP mirrors file sets (a set can also contain just a single file) and automatically de-
tects which files have been added to the local catalogue but have not been published
yet. By inserting files into the local catalogue, GDMP gets control over the files and the
corresponding replica information. Consequently, every single file needs to be registered
first before it can be replicated. gdmp_register_local_file needs to be used for this.
A possible local file catalogue looks like follows (in one single line):

flatfile:hostl.cern.ch_.pool.data.testfiles:filel1:1012039680:
603077316:1001660649

Which corresponds to:
filetype:file_id:relative_file_path_under_the_root_dir:size:checksum:timestamp

filetype can either be “flatfile” or “objectivity”. Note that file_ID corresponds to a
unique logical filename which is currently maintained by GDMP and cannot be changed.
checksum is created by GDMP using the checksum command line tool. timestamp is a
integer value for a file modification time.

Creating the Export Catalogue

The export catalogue contains information about all the files which are ready to be
exported to other sites. The program gdmp _publish catalogue is the trigger for the
replication mechanism. This program has to be called when new files are ready for
transportation to another site. It will compare the current and old local_file_catalogue.
New file entries are written in the file GDMP_INSTALL DIR/etc/export_catalogue which

16

lists all the new files that have been added to the local file catalogue since the last time
gdmp_publish catalogue was called.

A possible ezport catalogue looks like follows:
flatfile:hostl.cern.ch_.pool.data.testfiles.filel:filel
Which corresponds to:

filetype:file_ID:filename

file_ID corresponds to a unique logical filename which is currently maintained by GDMP
and cannot be changed. filename is the relative path starting from the directory after
storage_root_dir which is either GDMP_FLATFILE ROOT_DIR or GDMP_OBJY_ROOT_DIR (de-
pending on the file type).

Publishing the Export Catalogue

The file update is based on the following fact: newly added files to the local file catalogue
are detected and a difference between the new and the old local file catalogue is created.
Based on the differences with the old catalogue, the export catalogue is created and
transfered to all hosts subscribed and listed in the file GDMP_INSTALL DIR/host_list. A
client can only send this host list to a remote server if the user running the client is present
in the grid-mapfile(s) being used by the FTP server and the gdmp_server on the remote
machine. The export catalogue is renamed to import_catalogue at the destination site
in order to distinguish between imported export catalogues and locally created export
catalogues. Thus, the import catalogue holds the list of files which have been created
newly by a remote site.

A possible import catalogue looks like follows:

flatfile:hostl.cern.ch_.pool.data.testfiles.filel:filel:
/pool/data/testfiles:hostl.cern.ch:3001:1

Which corresponds to:
filetype:file_ID:filename:storage_root_dir:hostname:port:flag

file_ID corresponds to a unique logical filename which is currently maintained by GDMP
and cannot be changed. filename is the relative path starting from the directory after
storage root_dir which is either GDMP_FLATFILE ROOT_DIR or GDMP_OBJY ROOT DIR (de-
pending on the file type). hostname and port are the host name and port of the remote
host where the file is located. In general, all information in the import catalogue refers
to the remote file where it resides physically. flag is an internal flag to GDMP which is
used when a remote file needs to be staged and is not registered in the replica catalogue.

Transferring the files

The remote site can decide when to start the data transfer from the remote to the local
site. The program gdmp replicate get uses an FTP client library to securely transfer
files. The program transfers each of the files listed in the import catalogue automatically
to the local site. Each file is validated on arrival using the CRC checks, (is attached via
ooattachdb in case of an Objectivity file to the local federation) and the file entry is
deleted from the import catalogue. Finally, a file is registered in the replica catalogue.

17

5.3 Security Issues for GDMP Server and Clients

A GDMP server must run at each data production site. The port generally used is 2000,
however you can set any other port through the inetd by editing the /etc/services file. Note
that you will need root privileges to do this.

The server flags -m and -1 can be used to specify the grid-mapfile and a Grid log file,
respectively.

Note that the server uses its own service certificate and creates its Grid proxy automatically.
Furthermore, the proxy is acquired for an unlimited time while client proxies are created by
the user and by default are restricted to 12 hours. For large data transfers, the client proxy
might not be available long enough to transfer several Gigabytes. Thus, it is recommended
that the transfer time for a set of files be estimated and the proxy time be adjusted accordingly
with the -hours option:

grid-proxy-init -hours xxx

where xxx corresponds to the number of hours the proxy will be available.

5.4 Subscription to Remote Servers

The Data Grid is most efficient when many hosts are part of the whole Grid and hence data
is available in many different sites. Since a new site has to announce that it is available
in the Grid and ready to get notified about the creation of files and replicas, the program
gdmp _host_subscribe is used to subscribe the local host to any remote host. The local host
will then be integrated into the host list of the remote host. When a remote host has written
new files, the notification message and the export catalogue are transferred to each host in the
host list. Currently, a local host has to subscribe to each remote host separately.

5.5 Notification

When a user publishes a local file catalogue with gdmp_publish_catalogue, a remote server
gets notified and calls a configurable script which can then be used by external programs to
start a data transfer request. In principle, gdmp replicate_get can be executed and a fully
automatic replication process can be set up. On the other hand, a similar notification script is
called at the producer site when a consumer has successfully replicated a file. Thus, producers
can keep track of consumers requesting and replicating files and can delete files again if local
storage space is required. The following two variables in gdmp.conf need to point to the
notification scripts:

GDMP_NOTIFICATION_FOR_REPLICATE_GET
GDMP_NOTIFICATION_FOR_PUBLISH_CATALOGUE

As for the replicate get notification, GDMP will pass 2 arguments to this script: 1) full file
name 2) host which has transfered the file. A possible example is as follows:
GDMP NOTIFICATION FOR REPLICATE GET /root/dirl/filel hostl.fnal.gov

For the publish notification, three arguments are passed to the script: 1) host name which
has published files 2) file type 3) filename which contains the list of all newly published files.
It has the same format as import catalogue, and so one can pass this to gdmp_replicate_get
with the option -c . For example, a set of flat files has been published:
GDMP _NOTIFICATION FOR_PUBLISH CATALOGUE hostl.fnal.gov flatfile /some/dir/catalogue

18

5.6 System States for File Replication Process

In the entire replication process, we distinguish several system states that are indicated by
files with particular extensions. Thus, one can check the current status of a file transfer and
discover possible problems. All the system states are stored in the directory var in the GDMP
installation tree.

We now assume that a file “largeFile.extension” is transferred. In particular, a client at site
A requests the file from site B using gdmp replicate _get. The file name is first retrieved from
the import catalogue. The file ID (stored in the local file catalogue) is used for indicating files
and a particular extension (see below) is added to a status file of 0 size in the directory var.

The file ID contains the host name and all path information including the actual file name.
In principle, the file ID corresponds to a logical filename and is unique for all replicas of this

file. A file that should be transferred from hostl.cern.ch/data/filel has the following file ID:

hostl.cern.ch_.data.filel

After the host name a “_” is attached and “/” is converted to “.” The following transfer

states are defined:

e file_ID.stat: the transfer of a file is currently going on or the file has been requested for
transfer.

e file_[D.replicated: a file has been copied to its destination but not yet validated nor
registered.

e file_ID.validated: a file has been validated locally after the copy process. The validation
contains file size checks and CRC checksum comparison with the original file at the
remote site.

e file_ID.registered: a file has been successfully validated and registered to the local file
catalogue.

e file_ID.transferred: the file has already been successfully transferred, validated and reg-
istered but not yet deleted from the import catalogue. The tool gdmp_catalogue_cleanup
needs to be used to delete these files plus the entries in the import catalogue. Once the
file is in “transferred state”, it can be used by applications.

e file_ID.notified: a remote file has been notified about the correct file transfer (including
validation and registration).

e file_ID.req: a file is requested from a remote site and is on tape rather than on disk. A
staging request is initiated (see Section 7 for details on mass storage systems).

e file_ID.done: This file only exists for a very short time: when a staging requests has
been done at a remote site (from MSS to disk) and the local server can start to get a file.
Once the file transfer starts, the file is renamed to .stat.

In addition to the successful states, we also have a few error states:
e file_ID.not_validated: file validation failed
e file_ID.not_registered: file is not registered to the local file catalogue
e file_ID.not_notified: file notification failed

e file_ID.error: an error has occurred during the attachment of Objectivity files.

19

5.7 Replication Policy

The current replication policy available in GDMP is the following: a local site notifies other
remote sites if new files are available. The remote sites in turn can decide when to transfer
data. Currently, it is not possible for a site to actively transfer files to a remote site because
of security reasons (put files rather than get files). However, such a replication policy can be
integrated into a future software release if required.

5.8 Network Failures

In principle, each site that has not been reachable for some time is responsible for getting the
latest information from other sites. Once a site is up and the network is working properly, the
file gdmp_get_catalogue can be used to get the latest information from any site.

When a file transfer fails because of a network problem during the data transfer process, this
transfer can be resumed afterwards when the network is back again. Thus, the data transfer
continues from the latest checkpoint and prevents re-sending the whole file. This is based on
the “resume” feature of the nc-ftp client.

5.9 Some Program Restrictions

The server should be run on a machine which is accessible from the outside world.

In the current version, all clients need access to the GDMP_INSTALL DIR/tmp and
GDMP_INSTALL DIR/etc directories on the server side. So the local user, to which the client
user is mapped in the grid-mapfile used by the FTP server, should have read/write privileges
in these directories. This will be solved in later versions.

The Objectivity ”bootfilepath” given to the configuration file should be ezactly the same as
specified in the Objectivity’s catalogue. Note that alias names for directories cannot be used.

6 GDMP Tools

In this section we describe the command line tools for GDMP and give details on the interaction
with remote servers and the replica catalogue.

gdmp_catalogue_cleanup:

This tool provides a crash recovery functionality in cases when a remote site using a
Mass Storage System has crashed. In addition, the import catalogue is cleaned up for
all files that have been transferred successfully, i.e. file entries in the import catalogue
are removed. The tool deletes all temporary files (files with the extensions .req and
.transferred in the GDMP directory var) and recovers from crashes taking place during
the remote staging of files. Note that this command is also called automatically after
gdmp_replicate _get has succeeded transferring files. Refer to Section 5.6 for further
information on status information about the file transfer.

Usage: gdmp_catalogue_cleanup :
[-c <catalog>] name of import catalogue
[-t <flatfilelobjectivitylall>] type of catalog, default value is ’all’
[-h] for help message

20

For further details on the use of a Mass Storage System with GDMP refer to Section 7.

gdmp_filter_catalogue: This functionality allows a partial-replication model where not all
the available files in a local file catalogue are replicated. In detail, one or more filter
criteria can be applied to the import and/or export catalogue in order to sieve out
certain files. Refer to Section 5 for further details on import and export catalogues.

Two types of filters are supported: positive and negative filters. “positive” filter se-
lects files that satisfy a certain filter criterion, keeps these files in the catalogue and
deletes all other file entries whereas a “negative” filter deletes files from the catalogue
which satisfy at least one criterion. Filters can be used also with gdmp_replicate_get,
gdmp_get_catalogue, and gdmp_publish _catalogue.

An example for a positive filter is when a site only wants to publish files which have, e.g
the string “Rec” or “Tag” in the filename. As for a negative filter, a site may not want to
replicate files containing the word “Calio” in the filename. Hence, the export catalogue,
which contains all the files that a site wants to publish, has to be filtered so that file
entries that match the filter criterion are deleted. Note that the original files are not
deleted but only the file entries in the import or export catalogue. Furthermore, a site
that does not want to get certain files from other sites can use a filter to specify which
files it wants to have. In this case, the filter has to be applied to the import catalogue.

The gdmp_filter_catalogue command has an interactive interface with the following
four menu items:

e add filter: several filter criteria can be created for the import or export catalogue.
Note that separate filter criteria have to be created for the import and the export
catalogue.

e read filter: Displays the filter criteria on the screen.
e delete criterion: One or more of the filter criteria can be deleted.

e apply positive filter: This function applies a positive filter on the catalogue. It is
also possible to filter the catalogue by supplying a filter as a parameter to several

of the GDMP tools (see below).
e apply negative filter
e help

The criteria are stored in the files GDMP_INSTALL DIR/etc/import_catalogue filter
and

GDMP_INSTALL DIR/etc/export_catalogue filter. In order to start the program, one
of the options has to be used:

Usage: gdmp_filter_catalogue :
(-i | -e)
-i for import catalogue
-e for export catalogue
[-c <catalogue_path>] path of import/export catalogue.
[-h] for help message

21

Example: A site does not want to publish files that have the word “Jet” or “Muon” in the
filename. These two criteria have to be added via the tool stated above. On publishing
the export catalogue, this filter is applied on all the files listed in the export catalogue.

gdmp_get_catalogue: In case of a network or server failure, a certain host may not be
notified when an update is done. A site which is down for some time is responsible for
getting the latest information from other sites. This program contacts a certain host,
gets the remote file catalogue and creates the corresponding import catalogue locally. A
filter parameter can be applied optionally to filter the import catalogue.

Usage: gdmp_get_catalogue :
-r <remotehost> chooses a host from the host list
-p <remoteport> chooses a host port from the host list
[-t <flatfile|objectivity>] file type, default value is ’flatfile’
[-c <catalogue_path>] file in which you want to save the imported catalogue.
[-f <posineg>] filter the catalogue (pos or neg) after import.
[-h] for help message

The host name has to be the name of a host which appears in the host list. The infor-
mation about the remote port and directories which are necessary to get the catalogue
is taken from the host list in etc/host_1ist. The local site should already have a local
file catalogue although it is permitted to be empty.

GDMP creates two different catalogues for flat files and Objectivity files, respectively.
The option -t is used to specify which kind of catalogue is required.

With the option -c the file catalogue of the remote site is created locally in the file to be
specified as a second parameter without creating an import catalogue.

gdmp_host_subscribe: A host can subscribe to any other host in the Grid in order to be
notified when updates of files are done.

Usage: gdmp_host_subscribe :
-r <remotehost> remote host name
-p <remoteport> remote port number
[-h] for help message

The information about the local host is retrieved from the GDMP configuration file
(gdmp . conf) and is sent to the specified remote host.

gdmp_ping: This tool checks if the GDMP server is running on a particular host and port
and accepting clients. The remote server acknowledges this request and the message
“The GDMP server is listening” is printed at the client side. The client uses a timeout
value of n seconds (default is 10 seconds but can be changed with the timeout option
-t). Within these n seconds, the server has to send an acknowledgement. If the server
does not respond, the client terminates the connection to the server and assumes that
the server is currently not ready to accept messages from the client. Thus, this tool
should be called before a file transfer is started in order to ensure that the remote site is
responding correctly.

22

Usage: gdmp_ping :
-r <remotehost> remote host name
-p <remoteport> remote port number
[-t <timeout>] timeout value in seconds
[-h] for help message

gdmp_publish_catalogue: This tool must be used after gdmp register local file. It
creates the export catalogue locally (based on the content of the local file catalogue),
sends a copy to the subscribed hosts and registers complete replica information (LFN,
PFN, size, times tamp, CRC checksum, file type) into the replica catalogue. Note that
the local host must have write access to the directory GDMP_INSTALL DIR/etc of the
remote host where the corresponding import catalogue is created.

Usage: gdmp_publish_catalogue :
[-t <flatfilelobjectivity>] file type, default value is ’flatfile’
[-n] do not update the Replica Catalogue
[-f <pos|neg>] filter the catalogue (pos or neg) before publish.
It will only filter the newly add files and then publish.
[-h] for help message

When publishing files, either flat files or Objectivity files can be published. If the option
-n is used, replica information is not entered into the replica catalogue.

gdmp _register_local file: GDMP keeps a local file catalogue for all files that it manages,
thus every file that needs to be published and later replicated has to be registered in the
local file catalogue (GDMP_INSTALL DIR/etc/local file catalogue) by means of this
command. Since each replica needs to be uniquely identified, a replica is assigned a
logical filename (LFN) and a physical filename (PFN). The PFN is the actual file path
on a disk location. The LFN is part of the PFN and currently is assigned by GDMP due
to a restriction of the Globus replica catalogue. Refer to Section 4.2 for more details on
file naming issues.

Usage: gdmp_register_local_file :
-p <pfn>|-d <directory>
to add a single file use -p and
to add all files with in a directory use -d
[-t <flatfilel|objectivity>] specify the file type, default value is ’flatfile’
[-h] for help message

The tool stores the logical and physical filenames, the size, the modification time, the
CRC checksum, and the file type in the local file file catalogue. Currently, the LFN
cannot, be chosen but in future versions it will be possible to assign a user defined logical
filename to a set of identical replicas. One can register a single file (-p) with its entire
physical filename (PFN) or all files of a directory (-d). In both cases, the logical filenames
are assigned automatically based on the PFN and the storage root directory. Based on
the file type (flat file or Objectivity files), additional information will be stored in the
local catalogue.

23

Once the file is registered in the catalogue, it can possibly be staged to a mass storage
system before gdmp publish catalogue is called. Information in the local file catalogue
will be stored in the replica catalogue and then made available to the Grid. Note that
this tool has to be used before gdmp_publish catalogue is initiated!

gdmp_replicate_get: This is the main executable to transfer files from a remote machine
to the local host. The users should make sure that they do not have an older file in the
same directory and with the same name where the new file will be transferred to.

If no parameter is given, the default location of the import catalogue is used. By using
the option -c a particular import catalogue can be specified but it has to be in the correct
format. The import catalogue can be filtered for excluding particular files. The transfer
results can be written into a log file.

It is possible to start multiple gdmp_replicate_get clients on the same import catalogue.
The system itself takes care of concurrency issues and whether a file is already being
transferred by some other client or not. This functionality provides users with an easy
way to do parallel transfers and improve the network throughput obtained.

Usage: gdmp_replicate_get :

[[-c <catalogue>] import catalogue path |

[-i <fileid> LFN of the file

-r <remotehost> host from which file to transfer

-p <remoteport> port on which the remote gdmp server is listening
1]

[-t <flatfilelobjectivity>] filetype, default value is ’flatfile’

[-d4] attach dummy DB instead of original(for Objectivity files only)

[-n] no update in Replica Catalogue

[-f <poslneg>] filter the import catalogue (pos or neg) first before
replicating files.

[-h] for help message

The default assumption is that files are taken from the import catalogue and transferred
to the client machine. This allows a set of files rather than a single file to be replicated.
However, if the file_ID of the file at the source site is known, the options -i can be used
to replicate single files. A non-default import catalogue can be specified with the option
-c.

By default, when a file is replicated successfully to a local site, the file is validated and
then registered in the replica catalogue. In particular, the logical and physical filenames
as well as size, modification time, CRC checksum and file type are registered in the replica
catalogue. However, a site may request not to insert a file into the replica catalogue by
using the option -n.

If the file type “objectivity” is chosen, replicated files are attached to a local federation.
Since for large files the attach process can be time consuming, the option -d does a
“dummy attach” (a simple trick where a different file is attached where Objectivity does
not check for associations) that speeds up the attachment process.

Note that the data production site can store files in several directories. When these files
are transferred to the local site, these directories are not also created in the local root

24

directory specified by GDMP_FLATFILE_ROOT_DIR or GDMP_OBJY_ROOT_DIR.
Some internal details:

The before gdmp replicate get starts a data transfer, it checks if the size of the re-
quested file on disk corresponds to the file size in the remote local_file_catalogue. Only
if the file sizes correspond, the file gets replicated. Thus, GDMP makes sure that the
requested file is fully available at the remote site and not parts of the file only.

The tool also takes care of some error recovery before it starts to transfer files. It checks
the status of transferred files and if it finds some .not registered, .not notified,
.not_replicated or .not_validated, it will start the transfer process from this point
again. For instance, if .not_replicated exists, it will start transferring it again. Fur-
thermore, if .not_validated exists, this means that the file was not correctly transferred
last time and it will start the transfer again.

gdmp_server: A server has to be started on each site participating in the Data Grid. The
server is responsible for answering client messages, sending notification messages, and
handling security issues. The server is started by the Internet daemon (inetd).

gdmp_server [Mapfile] [Logfile]

server options
-m default value is /etc/grid-security/grid-mapfile
-1 Grid logfile, default: /var/gdmp.log

The port of the server is decided by the Internet daemon as specified in /etc/services.
A server must have read access to the grid-mapfile of the local Globus installation. In
this file the information about authorised users is stored. Option -m specifies the path of
the Grid-mapfile and -1 a log-file.

gdmp_stage_complete: is used only by the script GDMP_STAGE_FROM_MSS in order to
automatically initiate a file transfer when a file has been staged from tape to disk. For
further information refer to Section 7.

Usage: gdmp_stage_complete :
-f filename
[-h] for help message

The GDMP directory utils contains some shell utilities. It currently includes:

gdmp_server_start: This script is called by the inetd to start the GDMP server. See
Appendix A Section 8 for installation details.

gdmp_cert_update: This script can either be used to update the GDMP server certificate or
to switch between a Globus and a CERN certificate for the GDMP server. Note that the
script reads the GDMP_INSTALL_DIR from gdmp.conf. One can set the environment
variable GDMP_CONFIG_FILE to the location of the file gdmp.conf (see Section 3.4).

gdmp_cert_update [-switch]

The script can be used in the following two ways:

e If the script is called without the parameter “switch”, the newest GDMP server
certificate is down-loaded from the GDMP CVS repository and then updated. This
is necessary when the GDMP server certificate expires: 30 January 2002 for the
CERN certificate and 30 July 2002 for the Globus certificate.

e If the option -switch is used, one can either switch from a CERN to a Globus
certificate or vice versa. In general, the CERN certificate is the default one. The
script will get the latest certificate from the CVS repository and update the GDMP
configuration properly.

get_progress_report: The executable gdmp _replicate_get uses the . stat files in the GDMP
directory var directory for each file currently being transferred. These files contain
progress information on the transfer and are updated every few seconds. Once the file
has been completely transferred, these .stat files are deleted and the final transfer log
goes in the file GDMP_INSTALL_DIR /var/replicate.log. If you want to find out
the state of advancement of all the transfers currently in progress, you can run this script,
and it will produce a file GDMP_INSTALL_DIR /var/progress.log which will con-
tain the latest progress information.

A typical progress report (stored in the file progress.log) looks like follows:

filename - total size - bytes transferred - %age completed
/data/filel - 100000 - 50000 - 50%

A typical entry in the file replicate.log looks like follows:

/data/filel incoming from host: hostl.cern.ch, bytes transferred 100000,
start: [Wed Oct 17 21:44:52 2001], end: [Wed Oct 17 21:47:12 2001]

It contains the file to be transferred (the local file path), the start time and the end time
of the data transfer for the specific file.

gdmp_version: prints the version number of the current release.

Further scripts like for staging and notification can be added here.

7 Support for a Mass Storage System

7.1 Motivation

GDMP supports a simple interface for a Mass Storage System (MSS). Since we assume that
a site may run out of disk space, this interface is responsible for staging files from disk to the
MSS when the disk-pool is full and staging them back to disk when requested.

26

7.2 Flow of Control

Let us assume a case where a file is in the local file catalogue but because of storage-space
restrictions it has been staged to the MSS. Now this file is requested by a remote site via
gdmp_replicate_get, and the file cannot be found in the directory GDMP_FLATFILE ROOT_DIR
(or G DMP_OBJY_ROOT _DIR in case of Objectivity files). GDMP always looks into this
directory first. If the file is not found there, the remote client will send a request to stage the
file. The local GDMP server will receive this request and will start a staging script which is
pointed to by GDMP_STAGE_FROM_MSS. If the script is started successfully, the local
server will send a message back to the remote client saying that staging is now in process. The
remote client will disconnect and move on to the next files in its import catalogue. When the
file staging is complete, the script will call gdmp_stage_complete which will notify the remote
server that the file has been staged and is ready to transfer. The remote server will start a
new client using gdmp_replicate_get to transfer this file.

7.3 The Interface

The staging script itself is not provided by GDMP. We only provide a plug-in mechanism for
staging scripts (to and from the MSS) since different sites may have different Mass Storage
Systems and thus require specific procedures. The staging script should have the following
command line interface:

GDMP_STAGE_FROM_MSS <relative_path_name> <root_directory_on_disk>

where relative path name is a file path on disk and root_directory on disk is the stor-
age root directory on disk (either for flat files or Objectivity files).
For instance, a possible script could be invoked as follows:

GDMP_STAGE_FROM_MSS dirl/dir2/filel /data/directory
where the second argument would be mapped to the following physical file path on disk:
/data/directory/dirl/dir2/filel

It is required that the MSS itself has it internal catalogue about all files listed. Thus, it
needs to map this file information here to its internal file location.

It is required that the staging process is atomic. GDMP partly takes care of this internally.
GDMP has an internal method that checks the remote file size on disk and compares it with
the one registered in the local file catalogue. Only if both file sizes are the same, GDMP starts
the data transfer process. Thus, GDMP never transfers files that are partially staged to disk.

When the staging is completed, the script is expected to call the tool gdmp_stage_complete
which would notify the client that the file is ready to be transferred.

The second staging script for transfers from disk to MSS should have the following interface:

GDMP_STAGE_TO0_MSS <relative_path_name> <root_directory_on_disk>

The script should also have knowledge about the directory inside the MSS where the file
should be copied to.

27

7.4 Staging States

We define the following states for processing of files that reside on tape at the remote site. Let us
consider an example of a staging operation. A client requests the file filenamel from a remote
site with gdmp_replicate_get. Locally, this request is logged and the file filenamel.stat is
created in the GDMP directory var. If the file is on the remote disk, the local client carries
on with the transfer, and this status file contains the progress of the transfer. However, if the
file is not present on the remote disk, the local client sends a request to stage the file at the
remote end and produces a file filenamel.req in GDMP_INSTALL_DIR /var. The remote
server calls the staging script. The script starts the executable gdmp_stage_complete when
the staging has completed. This notifies the server on the requesting site that staging has been
completed on the remote end. The server then starts the gdmp_replicate_get which starts the
file transfer of filenamel and creates the file filenamel.stat indicating the transfer status.

7.5 Interface to HRM

GDMP has a plug-in for the Hierarchical Storage Manager (HRM) [1] APIs, which provide a
common interface to be used to access different Mass Storage Systems. The implementation
of HRM is based on CORBA communication mechanisms. Some initial integration tests have
been performed, with promising results.

The C++ plug-in and the CORBA IDL exist in the source directories under: StagingPlugins
and HRMIDL. We do not provide a production version of this now and thus the code is not in-
cluded into the installation tree. For details on the IDL refer to:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/ppdg_idl/

28

8 Appendix A: Configuring GDMP with inetd

This appendix gives a short introduction to inetd and explains which system files are edited
locally doing the GDMP installation process.

8.1 Inetd Background

Simply put, the inetd provides Internet service management for a networked computer. It
listens on certain ports and calls other servers or daemons to service request. Asregards GDMP,
we register a certain port, e.g. port 2000, with the inetd daemon and when a GDMP client
connects to the machine via a socket connection, the inetd daemon takes the request on port
2000, starts the GDMP server via the script GDMP_INSTALL DIR/utils/gdmp server start
and passes all the socket information to the GDMP server. The GDMP server in turn then
handles the client request.

In more detail, the inetd daemon starts by default each time the system is started. When the
daemon starts, it reads its configuration information from the configuration files /etc/services
and /etc/inetd.conf. GDMP is thus regarded as a service that is started by inetd.

8.2 Configuration Steps done by GDMP Installation Program

All the following steps are done automatically but we state them in some details for possi-
ble problem detection. In detail, the installation program inserts information into the files
/etc/services and /etc/inetd.conf to set up a service.

The following steps are done by root:

1. Edit inetd.conf to add in one line:
gdmp-server stream tcp nowait “username”
“GDMP_INSTALL_DIR” /utils/gdmp_server_start
The terms in “ “ have to be replaced by the respective fields and “username” needs to
be the userlD of the user running the GDMP server.

2. Edit the /etc/services file to add
gdmp-server “port” /tcp
again “port” is the port of your choice; we use 2000 mostly.

3. Send the HUP signal to the inetd server: Linux users can get the inetd process id (pid)
from /var/run/inetd.pid. On Solaris one can get the pid by doing ps -e | grep inetd.

To send the HUP signal to inetd you need to do:
kill -HUP <inetd_pid>

In principle, gdmp_server_start contains the environment variables PATH, LD_LIBRARY PATH
plus additional variables for GDMP, Objectivity and Orbacus.

Since inetd does not see the PATH and LD_LIBRARY PATH, you can set them here but it
depends on the system. Just do an echo PATH and echo LD_LIBRARY PATH and add whatever
you get in this file. Make sure you do not have any ”echo”s in this file for debugging or whatever
as the stdout is connected to the socket when the server is started with inetd.

29

8.3 Example Configuration for inetd

An example for a /etc/inetd.conf file entry is given here. GDMP is assigned the service name
gdmp-server and the gdmp_server_start script will be called when inetd receives a request on
the port 2000. We assume now that is the is default GDMP port. The port itself is configured
in the file /etc/services (see below). As for all examples in this User Guide we assume that
the GDMP installation directory is /usr/local/grid/gdmp. Note that the entire sequence has
to be added in one single line and the server is started as user “username”:

gdmp-server stream tcp nowait username \
/usr/local/grid/gdmp/utils/gdmp_server_start

In the file /etc/services the GDMP server port is assigned:

gdmp-server 2000/tcp # GDMP port

30

9 Appendix B: Example for gdmp.conf

Here we print the entire contents of the file gdmp.conf will a possible example as already
introduced in Section 3. The comments in the configuration shall provide more detailed un-
derstanding;:

g g g G g G g g g g g g
#GDMP Installation Directory.(COMPULSORY)

#This variable should be set otherwise GDMP commands will not work properly.
HH R R R
GDMP_INSTALL_DIR=/usr/local/grid/gdmp

HEHHHHAEHHRHEH B R HEHHRHEH R HAHHEHHEH R H AR H AR B R H AR H S H RS R RS
#GDMP Local Host Full Name. (COMPULSORY)

B B B B B B B G i s R
GDMP_LOCAL_HOST=hostl.cern.ch

HERHHHEHHHH R H R
#GDMP Domain Name(Optional)

#If not provided then if GDMP_LOCAL_HOST is localhost.domain.name

#then GDMP_LOCAL_DOMAIN will be domain.name

HERHHHEHHHH R H R R
GDMP_LOCAL_DOMAIN=cern.ch

s s s
#Port number on which the GDMP server is listening.(COMPULSORY)

#It should be the same as you have used in the /etc/inetd.conf file
g
GDMP_PORT_NUMBER=2000

HEHHHHHHH AR HH G HHR RS HH SRR R R R R
Globus installation directory.(COMPULSORY)

HEHHH B H R R R R R R R R R
GLOBUS_LOCATION=/opt/globus

HEHSHH R R R R R R R
#0bjectivity installation directory.(OPTIONAL)

HHHHHHHHHH ARG R HAHAHEH ARG HA RS R HBHBHHHBH B HRHEHEHAHEH AR H SRR SRR H SRR HS
OBJECTIVITY_DIR=/usr/local/bin

g g G g g g g g
#0rbacus installation directory.(OPTIONAL)

L s
ORBACUS_DIR=/usr/local/bin

HEHHH B H R R R R R R R R R R

#Local/NFS mounted directory for Flat Files.(COMPULSORY)
HAEHHHHAH B HAEH R HHH R R R R R R R

31

GDMP_FLATFILE_ROOT_DIR=/pool/data/flatfiles

g g G g G g g g g g
#Script/Executable to stage a file from MSS(OPTIONAL)

#This script will be called by GDMP to stage a file from MSS

#GDMP will pass 2 args to this script

#1) file_relative_path

#2) root_directory_where_this_script_should_copy_the_file

#e.g. If GDMP calls this script like

$GDMP_STAGE_FROM_MSS dirl/dir2/filel /root/directory

#then this script should copy the "dir1l/dir2/filel" from MSS

#into "/root/directory/dirl/dir2/filel"

HHHH R R R
GDMP_STAGE_FROM_MSS=/usr/local/grid/gdmp/utils/stage_from_mss

HAHHHHHH B HAHHHHEH R EH R R R R R
#Script/Executable to migrate a file to MSS(OPTIONAL)

#This script will be called by GDMP to migrate a file to MSS

#GDMP will pass 2 args to this script

#1) file_relative_path

#2) root_directory_where_this_file_exists_on_disk

#e.g. If GDMP calls this script like

$GDMP_STAGE_TO_MSS dirl/dir2/filel /root/directory

#then this script should copy the "/root/directory/dirl/dir2/filel"
#from disk and save it into MSS

HHHHHHHHHH ARG AR HAHAHEH ARG R ARG R HBH B SR H R B HRHRHEHAHEH AR AR SRR SRR H SRR HS
GDMP_STAGE_TO_MSS=/usr/local/grid/gdmp/utils/stage_to_mss

s s s
#To create a listing of files in a directory(OPTIONAL)

#GDMP will call this script with 2 args

#1) directory_for_which_GDMP_needs_listing

#2) file_in which_this_script_should_save_the_listing

#e.g. if GDMP calls this script as

#$GDMP_FILE_CATALOG_SCRIPT /root/directory /tmp/tmp_file_234

#Then this script should search in the "/root/directory" directory
#and create a list of all files in this directory and save it in
#/tmp/tmp_file_234 file.

#each line in "/tmp/tmp_file_234" should have this format
#<filetype>:<logical_name>:<file_path>

#where,

<filetype> = filetype e.g. for flat files it should be ’flatfile’
for Objectivity files is could be ’objectivity’

or you can use ’default’ which mean select the one
which is passed as command line arg to

gdmp_register_local_file, so if

gdmp_register_local_file is called for flatfile

then default will be changed to ’flatfile’ and if

32

gdmp_register_local_file is called for Objectivity
files then default will be changed to ’objectivity’
<logical_name> = logical file name for the file. Each file should have
a unique logical file name. One can set this value
to ’automatic’ which mean gdmp should create a logical
file name for it.
If GDMP is going to create logical file name then
for Flat Files it will be,
GDMP_LOCAL_HOST_<modified_file_full_path>
where <modified_file_full_path> = each ’/’
in the file full path will be replaced to ’.’
and each ’.’ will be replaced to ’..’
for Objectivity files it will be,
DB_SYSNAME.DBID
<file_path> = File full path. e.g if "/root/directory" directory
has a file dirl/filel then <file_path> will be
"/root/directory/dirl/filel"
#If you don’t set this variable then
#$GDMP_INSTALL_DIR/utils/create_file_export_catalog will be used
#which will create listing of the form
#default:automatic:<file_full_path>
s T s
GDMP_FILE_CATALOG_SCRIPT=

H OH H H H HEHHHEHHHEHHEHEHFH

g g G g g g g
#DN of Globus Replica Catalog Manager (COMPULSORY, if you want to
#search/update)

#Contact the Replica Catalog Administrator to get the value of this
HHEHH R
GDMP_REP_CAT_MANAGER_DN="cn=RCManager, dc=host2, dc=cern, dc=ch"

g
#Passwrod for Globus Replica Catalog Manager (COMPULSORY, if you want to
#search/update)

#Contact the Replica Catalog Administrator to get the value of this
s T s
GDMP_REP_CAT_MANAGER_PWD=secret

HEHHHHAH AR H AR H AR H SR HHHH AR R R R
#Collection URL in which Flat Files info will be saved(COMPULSORY,

#if you want to search/update)

#Contact the Replica Catalog Administrator to get the value of this
R B B g s
GDMP_REP_CAT_FLATFILE_COLL_URL=1dap://host2.cern.ch:2010/

lc=flatfiles, rc=replica-catalogue, dc=host2, dc=cern, dc=ch

HEHHH R R R R R

33

#Globus Replica Catalog URL(COMPULSORY, if you want to search/update)
#Contact the Replica Catalog Administrator to get the value of this
s s s
GDMP_REP_CAT_URL=1dap://host2.cern.ch:2010/

rc=replica-catalogue, dc=host2, dc=cern, dc=ch

T s
#Script/Executable for the File Transfered Notification(OPTIONAL)

#GDMP will run this script when a remote site has successfully
#transfered a file. GDMP will pass 2 args to this script

#1) full_file_name

#2) host_which_has_transfered_this_file
#$GDMP_NOTIFICATION_FOR_REPLICATE_GET /root/dirl/filel shahzad.fnal.gov
#0ne can write this script to log this info, delete the local file etc
#If site A is transfering files from site B then this script will be
#called at site B
g
GDMP_NOTIFICATION_FOR_REPLICATE_GET=/usr/local/grid/gdmp/utils/
notifcation_get

s T s
#Script/Executable for the File Publish Notification(OPTIONAL)

#GDMP will run this script when a remote site published some files
#GDMP will pass 3 args to this script

#1) host_name_which_has_published_files

#2) type_of_files

#3) Filename which contains the list of all newly published files.

It has the same format as import catalogue, so one can

pass this to gdmp_replicate_get with the option -c
#$GDMP_NOTIFICATION_FOR_PUBLISH_CATALOGUE shahzad.fnal.gov flatfile \

/some/dir/import_catalogue_for_newly_published_files

#0ne can write this script to automatically start the
#gdmp_replicate_get to transfer the published files

#If site A is publishing files to site B,C and D then this script will
#be called at site B,C and D
g
GDMP_NOTIFICATION_FOR_PUBLISH_CATALOGUE=/usr/local/grid/gdmp/utils/
notifcation_publish

s
#0bjectivity Related Variables.

#These values will be used only if you have built GDMP with
#0bjectivity Option and want to transfer Objectivity files, otherwise
#you don’t have to set these variables
g
#Local/NFS mounted directory for Objectivity DB files.(COMPULSORY)
s

34

GDMP_0BJY_ROOT_DIR=/pool/objy

s s s
#Boot file path for the Objectivity Federation.(COMPULSORY)
s s
00_FD_BO0T=/pool/objy/example_federation.boot
T s
#FDID for the Objectivity Federation(Optional)

#If you don’t have a local Objectivity federation and you want to
#build one when you first time run gdmp_replicate_get then you can set
#this variable to assign the FD ID for the new Objectivity Federatoion
#If this value is not set then the default value will be used which is "1"
g
GDMP_DEFAULT_NEW_FDID=12345
g
#Globus Replica Catalog(GRC) Collection URL for Objectivity.(COMPULSORY)
#If you want to update the GRC for Objectivity files then set this
s s s
GDMP_REP_CAT_OBJECTIVITY_COLL_URL=1ldap://host2.cern.ch:2010/
lc=objyfiles, rc=replica-catalogue, dc=host2, dc=cern, dc=ch

10 Appendix C: Usage of Grid Security Infrastructure

This is a short introduction into the usage of Grid security in Globus and should be sufficient
for using GDMP. It is intended for people new to Globus. For exact details, please refer to the
Security section at the Globus web page: http://www.globus.org/Security/

GDMP assumes that Globus is installed at the local machine and requires the authentication
and authorisation method of Globus. In particular, the Globus command grid-proxy-init.
Please check if this command is available on your system.

In order to use Globus, one needs to have a special certificate and a key which are required
for the authentication procedure. For certificate requests and further details on certificates
refer to the Testbed and Integration web page of DataGrid at: http://marianne.in2p3.fr/ and
check out the side bar “Certification Authorities”.

We now assume that you have requested such a certificate and the key. The files usercert.pem
and userkey.pem by default are stored in:

user_home_directory/.globus
Please make sure that the two files have the correct access permissions:

B e 1 username group 963 Mar 8 2001 userkey.pem
-r--r—-r-- 1 username group 3873 Mar 8 2001 usercert.pem

Once all the files are correctly in place, a “proxy” can be gained via grid-proxy-init
which provides a single log on to several machines where you are registered as a Grid user.
Only when the proxy is valid (it expires after some time) GDMP tools can be used. The
lifetime of the proxy can be checked with the Globus command grid-proxy-info like follows:

host1>grid-proxy-info -all

subject : /0=Grid/0=CERN/0U=cern.ch/CN=Firstname Surename/CN=proxy
issuer : /0=Grid/0=CERN/0U=cern.ch/CN=Firstname Surename

type : full

strength : 512 bits

timeleft : 25:59:59 (1.0 days)

The subject name “/O=Grid/O=CERN/OU=cern.ch/CN=Firstname Surename” uniquely
identifies a Grid user. Before you want to access a remote machine, e.g. set up a GDMP transfer
between host1.infn.it and host1.cern.ch, you need to request the remote administrator to enter
your subject name to the machines “grid-mapfile” that holds all authenticated users. Note
that this only needs to be done once before the GDMP installation process.

36

11 Appendix D: Replica Catalogue API

11.1 Description of the Programming Interface

The Replica Catalogue API is a generic C++ API to the Globus replica catalogue. It im-
plements most of the methods for the Replica Catalog as stated in the Data Management
Architecture document, “Section Replica Catalog” [7]. For background on replica catalogues,
logical and physical filenames please refer to this [7].

The C++ replica catalogue class (to be found in the GDMP installation tree under
include/ReplicaCatalog/ReplicaCatalog.h is defined as follows and allows for insertion,
deletion and search of replica information:

class ReplicaCatalog {

public:

ReplicaCatalog(RC_Url contact_string,
string manager_dn,
string manager_pw,
string collection_url);

“ReplicaCatalog(void);

vector<string> getPhysicalFileNames(string 1fn);

string getLogicalFileName (string pfn);

RC_Result addLogicalFileName(string 1fn);

RC_Result addPhysicalFileName(string 1fn, string pfn);

RC_Result deleteLogicalFileName(string 1fn);

RC_Result deletePhysicalFileName(string 1fn, string pfn);

RC_Result addLogicalFileAttribute(string 1fn, string attrnam, string attrval);
RC_Result deletelogicalFileAttribute(string 1fn, string attrnam, string attrval)
deque<GDMP_AttrVal_Pair> getLogicalFileAttributes(string 1fn);

private:
RC_Url rc_url_;
string collection_url_;

GDMP_Rep_Catalogue* rep_catalog_;
};

Note that the variables in the constructor need LDAP specific information and need to be
checked with the replica catalogue administrator.

11.2 Usage Instructions

The replica catalogue API does not depend on GDMP and can be compiled and linked without
the GDMP source code. In order to use the API in an application, a the ReplicaCatalogue
library as well as a few Globus and LDAP libraries need to be linked to the application (see
example makefile below). Note that the ReplicaCatalog library is available as a static and
shared library. If the shared library is used, then the directory 1ib of the GDMP installation
tree needs to be added to the LD_LIBRARY PATH.

A test program for the replica catalogue can be found in the directory test in the GDMP
source code tree which is also available at the CVS repository at the address below. Please

37

make sure that gdmp install is called before rc_addtest is executed. If not, you need to
include “lib/.libs” to the library path.

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/gdmp/
A possible makefile looks like follows:

g++ rc_addtest.C -g -o rc_addtest -I$GLOBUS_LOCATION/include \
-I../ReplicaCatalogue -I$GLOBUS_LOCATION/include/gcc32dbgpthr \
-L../1lib/.1libs -L$GLOBUS_LOCATION/1ib \

-1ReplicaCatalog -1lglobus_replica_catalog_gcc32dbgpthr \
-lglobus_common_gcc32dbgpthr -1ldap_gcc32dbgpthr -1llber_gcc32dbgpthr

38

12 Appendix E: BrokerInfo API

12.1 Description of the Programming Interface

The BrokerInfo C++4 API provides the user with an interface to job information that comes
from the Job Scheduler. The Scheduler selects a Computing Element to send a job for execution
and writes info about the selected resources in the BrokerInfo file which is shipped together
with the job. Reading the BrokerInfo file through this interface,the application may retrieve
info on the Computing Element where the job is running, the close Storage Elements, etc. The
API provides also an implementation for methods that will be provided by the WP2 Replica
Manager interface in the future.

A more detailed description of the BrokerInfo library and its functionality can be found in
the BrokerInfo document provided by WP1 [8].

The C++ BrokerInfo and ReplicaCatalogB classes (to be found in the GDMP installation
tree under
noindent include/BrokerInfo/BrokerInfoB.hand include/BrokerInfo/ReplicaCatalogB.h)
are defined as follows:

class BrokerInfoEx {

};

class BrokerInfo {
public:

“BrokerInfo(void) ;

static BrokerInfo* instance(void);

BI_Result getCE(string& CE) const;

BI_Result getDataAccessProtocol(vector<string>& DAPs) const;
BI_Result getInputPFNs(vector<string>& PFNs) const;

BI_Result getLFN2PFN(string LFN, vector<string>& PFNs) const;
BI_Result getSEs(vector<string>& SEs) const;

BI_Result getSEProto(string SE, vector<string>& SEProtos) const;
BI_Result getSEPort(string SE, string SEProtocol, string& SEPort) const;
BI_Result getCloseSEs(vector<string>& SEs) const;

BI_Result getSEMountPoint(string CloseSE, string& SEMount) const;
BI_Result getPFNs(vector<string>& PFNs) const;

private:

BrokerInfo(void) ;
BI_Result vSearch(const char* searchstr, vector<string>& retvect) const;
BI_Result sSearch(const char* searcharg, const string searchstr,
int& position) const;
BI_Result svIndexBuild(const char* sarg, const string sstr,
const string varg, vector<string>& retvect) const;
void vBuild(const string buildstr, vector<string>& retvect) const;

string BrokerInfoFile_;
ifstream fbrokerinfo_;

39

strstream mbrokerinfo_;
ClassAdx ad_;
static BrokerInfox instance_;

}

class ReplicaCatalogBEx {
};

class ReplicaCatalogB {
public:

“ReplicaCatalogB(void);

ReplicaCatalogB(void);

vector<string> ReplicaCatalogB: :getPhysicalFileName (string LFN);

string ReplicaCatalogB: :getBestPhysicalFileName (vector<string> PFN,
vector<string> Protocols);

string ReplicaCatalogB::getTransportFileName(string PFN, string Protocol);
string ReplicaCatalogB: :getPosixFileName(string TFN);

BI_Result ReplicaCatalogB::getSelectedFile(string LFN, string Protocol,
string TFN, string FileName);

private:
BrokerInfo *xbrokerinfo_;

};

};

12.2 Usage Instructions

The BrokerInfo API does not depend on GDMP and can be compiled and linked without the
GDMP source code. In order to use the API in an application, BrokerInfo library as well as
the Condor ClassAd library need to be linked to the application (see example makefile below).
Note that the BrokerInfo library is available as a shared and static library. If you use the
shared library, the directory 1ib of the GDMP installation tree needs to be added to the
LD_LTIBRARY PATH.

A test program for the BrokerInfo can be found in the directory test in the GDMP source
code tree which is also available at the CVS repository at:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/gdmp/
A possible makefile looks like follows:

g++ BrokerTester.C -g -o BrokerTester \
-I../BrokerInfo \
-I/usr/local/grid/ClassAd/include \

40

-L../1ib/.1ibs \
-L/usr/local/grid/ClassAd/1ib \
-1BrokerInfo -lclassads

41

Acknowledgements

The GDMP project (originally called Grid Data Management Pilot) was started in early 2000
as a pilot project by Heinz Stockinger and Asad Samar to evaluate the Globus toolkit, take
useful features for a file replication system and produce a prototype to be evaluated in a real
production environment.

The software development process is already well advanced and the project is now a collab-
oration between the European DataGrid (in particular the Data Management work package)
and the Particle Physics Data Grid (PPDG). Thus, the GDMP team was increased and we
got lots of constructive feedback from our colleagues in DataGrid and PPDG. In particular,
we want to thank the WP2 team (the bigger subset that is not already in the GDMP team):
Wolfgang Hoschek, Peter Kunszt, Javier Jaen-Martinez, Ben Segal, Kurt Stockinger and Brian
Tierney.

From the US side, we want to thank the Globus team: in particular Bill Allcock, John
Bresnahan, Ann Chevernak, lan Foster, Carl Kesselman, Darcy Quesnel and Mike Wilde (we
definitely have forgotten a few names (sorry about that) but these are the people we have most
contacts with). Thanks also to Miron Livny (Univ. of Wisconsin) for good discussions which
led to several useful additions to GDMP.

Versions 1.0 until 1.2.2

We keep the acknowledgement of older GDMP versions too since the following people gave
constructive feedback and discussion during the first project phase:

We want to thank Tony Wildish (Princeton University) for initial work on a replication tool
written in Perl. This tool [12] and personal discussions have provided us with important input
for the architecture of GDMP. Furthermore, thanks to Koen Holtman (Caltech) who is re-using
and testing parts of our code and has pointed out some bugs in the software. Thank you also
to Shahzad Muzaffar (Fermi National Lab.) for taking part in the transatlantic replication
tests and fixing bugs in GDMP. Thanks to Flavia Donno (INFN) for very valuable input and
providing an installation procedure for GDMP within the INFN Installation. Finally we want
to thank Luciano Barone (INFN), Dominique Boutigny (IN2P3), Johannes Gutleber (CERN),
Mehnaz Hafeez (CERN), Koen Holtman (Caltech), Wolfgang Hoschek (CERN), Bob Jacobson
(LBL), Werner Jank (CERN), Javier Jaen-Martinez (CERN), Veronique Lefebure (CERN),
Harvey Newman (Caltech), Ben Segal (CERN), Arie Shoshani (LBL), and Kurt Stockinger
(CERN) for their input and valuable discussions. We are also thankful to the Globus team for
providing support and technical advice on various issues.

References

[1] L. M. Bernardo, A. Shoshani, A. Sim, H. Nordberg. Access Coordination of Tertiary Storage
for High Energy Physics Application, 17th IEEE Symposium on Mass Storage Systems and
8th NASA Goddard Conference on Mass Storage Systems and Technologies, Maryland,
USA, March 27-30, 2000.

[2] European DataGrid Project: http://www.eu-datagrid.org

[3] Data Management Work Package in EDG: http://grid-data-management.web.cern.ch/grid-
data-management

42

[4] Andrea Domenici, Notes on the Usage of an experimental Replica Catalog
for the CERN DataGrid Testbed, 14 August 2001. http://www.cern.ch/grid-data-
management /docs/ldapuse.ps

[5] Globus Project: Getting Started with the Globus Replica Catalog,
http://www.globus.org/datagrid /deliverables/replicaGettingStarted.pdf

[6] Mehnaz Hafeez, Asad Samar, Heinz Stockinger. A DataGrid Prototype for Distributed Data
Production in CMS, VII International Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT2000), October 2000.

[7] Wolfgang Hoschek, Javier Jean-Martinez, Peter Kunszt, Ben Segal, Heinz Stockinger,
Kurt Stockinger, Brian Tierney. Data Management (WP2) Architecture Report - Design,
Requirements and Valuation Criteria, DataGrid-02-D2.2-0103-1_2, http://grid-data-
management.web.cern.ch /grid-data-management /docs/DataGrid-02-D2.2-0103-1_2.pdf,
Geneva, Sept 19, 2001.

[8] Flavia Donno, Salvo Monforte, Francesco Prelz, Livio Salconi, = Mas-
simo Sgaravatto. The Resource Broker Info File, DataGrid-01-NOT-0113
http://www.pd.infn.it/ sgaravat/Grid/datagrid-01-not-0113-1_2.pdf Pisa, Sept 28,
2001.

[9] Particle Physics Data Grid project (PPDG): http://www.ppdg.net

[10] Asad Samar, Heinz Stockinger. Grid Data Management Pilot (GDMP): A Tool for Wide
Area Replication, IASTED International Conference on Applied Informatics (AI12001),
Innsbruck, Austria, February 19-22, 2001.

[11] Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtman, Brian Tierney.
File and Object Replication in Data Grids, 10th IEEE International Symposium on High
Performance and Distributed Computing (HPDC-10), San Francisco, California, August
7-9, 2001.

[12] http://www.cern.ch/wildish

[13] Wengyik Yeong, Tim Howes, Steve Kille. Lightweight Directory Access Protocol, Request
For Comments (RFC) 1777, March 1995.

43

